Home About Authors Look Inside The Book Answers Ordering Feedback Contact Us
 
 

 
 

Answers To The Exercises: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14
Lesson 3
 


3.1.
For any angle , sin2 + cos2 = 1 (main identity). Therefore, the answer is 1.

3.2.
Using the formula tan = sin/ cos, Nick could divide numbers in the sine-row by the numbers in the cosine-row.

3.3.
cot = cos/ sin

3.4.

3.5.
1) For any angle , tan ·cot = 1. However, 1/2 · 2/3 1.
2) For any angle , sin2 + cos2 = 1. However, (0.3)2+ (0.7)2 1.
3) If is in the range 45°<< 90°, then tan> 1. You can see this from the picture.

3.6.

3.7.

3.8.

3.9.
Let s=sin, c=cos. Then

1) tan + cot = s/c + c/s = (s2 + c2) / (c-s) = 1/(c-s) = sec csc

2) 1+tan2 = 1+s2/c2 = (c2+s2) /c2 = 1/c2 = sec2.

3) sin4-cos4=(s2-c2)(s2+c2) = s2-c2.

3.10.

3.11.
f(30°) = sin 30° + cos 60° = ½ + ½ = 1.

3.12.

3.13.
tan (90° - ) = sin (90° - ) / cos(90° - ) = cos / sin = cot

3.14.

3.15.

 

 

  Copyright © 2003 Dad's Lessons. All Rights Reserved